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Necessary conditions for linear stability of a rotating, compressible and inviscid fluid 
are found by the generalized progressing wave expansion method. The full three- 
dimensional problem involving an arbitrarily given rotational symmetric external 
force field is considered for an arbitrary steady shear flow with vanishing axial velocity. 
The results obtained are compared with previously known results. 

1. Introduction 
The stability Qf rotating fluids has previously been studied in a large number of 

papers. The fundamental paper on inviscid flows is that of Lord Rayleigh (1916), 
while viscid flows were first studied by G. I. Taylor (1923). These and a number of 
later works are discussed in the book by Chandrasekhar (1961). The majority of the 
previously known results concerns incompressible fluids ; only recently some of the 
problems have been studied for compressible fluids (see Lalas 1975; Warren 1975; 
Eckhoff & Storesletten 1978, and the references quoted there). 

In addition to the small-scale laboratory phenomena such as fluid flows between 
two coaxial rotating cylinders, the natural background for the study of rotating 
iiuids also include medium-scale geophysical phenomena such as cyclones and large- 
scale geophysical and astrophysical phenomena such as the basic rotation behaviour 
of planetary and stellar atmospheres. With this background it seems important t o  
extend the theory to rather general shear flows of compressible fluids subject to a 
rather general external force field. 

In this work we study the stability of general steady azimuthal shear flows of an 
inviscid compressible fluid subject to a general rotational symmetric external force 
field. Thus we consider basic states and external force fields which depend both on the 
distance r from the axis of rotation and on the distance z along this axis. We obtain 
necessary conditions for linear stability of such basic states with vanishing axial 
velocity by the same method as we applied to swirling flows in Eckhoff & Storesletten 
(1978; hereinafter referred to as I)  when the basic states and the potential for the 
external forces were assumed to depend on r only. Our method is based on the general- 
ized progressing wave expansion method (see Friedlander 1958; Ludwig 1960; 
Eckhoff 1975). 

Most of the results known on the problem of stability of shear flows in hydro- 
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dynamics have been obtained by the normal mode method, which therefore must be 
regarded as the conventional approach to this problem. In general this approach leads 
to an eigenvalue problem for a partial differential operator with boundary conditions. 
In  order to be able to study this eigenvalue problem, assumptions have always been 
made so far which essentially transfer the problem to an eigenvalue problem for an 
ordinary differential operator. Even with such assumptions the eigenvalue problem is 
in general very difficult to solve; the stability problems are therefore not completely 
resolved even in these cases. Recently an attempt to give a common analytical basis 
for the study of these eigenvalue problems was given by Warren (1976, 1978). In the 
general case considered in this paper it is not possible to transfer the problem to an 
eigenvalue problem for an ordinary differential operator, the normal mode approach 
therefore would not get us very far. As will be seen in the following, however, the 
generalized progressing wave expansion method gets around these difficulties and 
enables us to prove necessary conditions for stability of very general shear flows. 

When the external force field has no axial component, we find that all basic states 
with axial shear are unstable. Thus a stable basic state is necessarily independent of 
z in this case; it is therefore a special case of the swirling flows considered by Warren 
(1975) and I .  

When the external force field has an axial component, we find that the picture is 
radically changed. In  order that the basic state shall be stable in this case, the fluid 
must be stratified in a (statically) stable way and the velocity profile must satisfy 
a condition which is shown to be a generalization of the classical condition by Lord 
Rayleigh (1  9 16). 

2. The basic equations 
The fundamental equations are 

av 
-+v.vv = -p-'Vp+VV, 
at 

-+v.vp+pv.v aP = 0, 
at 

a 
- (pp-7) + v . V(pp-r) = 0, at I 

where v denotes the velocity, p the density, p the pressure, V a given potential for the 
external forces acting on the fluid, and y is a constant. 

In an inertial frame we let ( r ,  q5, z )  denote cylindrical co-ordinates where the x axis 
coincides with the axis of symmetry in the basic state. In particular, the potential for 
the external forces is assumed to be independent of $, i.e. V = V(r, z ) .  The basic flow 
of the rotating fluid may then be written as 

v = v,(r, 2) +, P = Po@, z ) ,  P = Po(r, 2). 

Here v,, p,, p ,  are assumed to satisfy the equations 
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In the basic flow (2 .2 ) ,  the rotation as well as the shear are manifested in vo, which 
can be chosen arbitrarily. In fact, by eliminating p o  in (2.3) we get 

For given zjo, (2.4) is a linear partial differential equation of order 1 for po which can 
be solved by standard methods (see Courant & Hilbert 1962). The general solution of 
(2.4) involves an arbitrary function of one variable. This means that the stratification 
in the basic flow (2.2) of the fluid may be arbitrarily chosen (in one direction). Finally, 
when both vo(r, z )  and po(r ,  z )  have been chosen such that (2.4) is satisfied, po(r ,  z )  is 
determined to within an additive constant by (2.3).  

In  order to study the stability properties of the basic flow (2 .2 ) ,  we perturb it in a 
similar way as we did in I, i.e. we introduce the following expressions into (2.1): 

Here co = (ypo/po)l denotes the local sound speed. By substituting (2.5) into (2.1), 
the linearized equations for the perturbations are found to be 

where w = (ur, u+, uz, sl ,  s2} represents the perturbation superimposed on the basic 
flow (2 .2 ) .  Here o is treated as a column vector and the coefficient matrices are 

o o o o c o  r 1 v 0  0 0 0 0 
0 0 0 0 0  

’ ( 2 . 7 a , b )  

A3 = 

where 

0 0 0 0 0  
0 0 0 0 0  

0 0 0 0 0  
o o o o c o  

o o c o o o  
a2 0 0 
H2O 0 

2r-’vO-a 0 
0 
0 
0 
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We see that (2.6) is a symmetric hyperbolic system analogous to the system (2.5) 
in I. The matrix B obtained here, (2.7d), is seen to be more complicated than the 
corresponding matrix in I, (2 .6d) ,  while the matrices Aj obtained here, (2.7a, b, c ) ,  are 
similar to the corresponding matrices in I, ( 2 . 6 ~ )  b ,  c ) ,  when we put w, = 0 there. The 
characteristic equation, the characteristic roots and the eigenvectors associated with 
these roots are therefore similar here to those in I where we put w, = 0. I n  particular, if 
we let the leading term of the generalized progressing wave solution for the gravity 
waves (inertial waves) be given by 

where i = J - 1 and w denotes the frequency parameter, we find that the phase function 
a,(y, $, z, t )  exp(iw@(r, $, z ,  t ) } ,  (2.9) 

0 must satisfy 
(2.10) 

Furthermore, the amplitude a, must have the form 

a, = u1 r, + u2 r2 + u3 r3, 
where cr,, u2, u3 are determined by the transport equations which we shall give below, 
and r,, r,, r3 are given by (2.9), (2.14) in I with the quantities tl, t2, t3 defined by 

(2.11) 

i.e. tl, r-lt2, 6 3  are analogous to  the components of the wavenumber vector. 
The ray equations for the gravity waves obtained from (2.10) are 

(2.12) 

(2.13) 

The solutions of (2.13) are readily found to be 

r = T o ,  $ = $, + rcl vo(ro, 2,) t ,  z = z,, ( 2 . 1 4 ~ )  

6, = ~ A + r ~ l [ ~ a ( r o , z o ) t ,  t2 = to”, c3 = g ~ - r ; ’ ( ~ b ( r , , z , ) t ,  (2.14b) 

From (A 15) of I, the transport equations for the gravity waves are found to be in 
where r,, $,, z,, ti, ti, 5; denot,e the initial values a t  t = 0. 

the case considered here 

d u  
-l = k-2( - r-1&1c~a - r-15243(al + p,)} u1 
dt 

+ k2{ - r-lt1t2( 2b + P1) + r-152[3(2r-1v, - a + a,)} u2 

+ k - 2 { ( ~ 1 ) 2 b - ~ 1 ~ ~ ( 2 r - 1 v 0 - a + a 2 ) -  (r-1c2)2(b+,81) + (53)2a1}u3, (2.15) 

du2 - = k-2{r-1t1g2(b - a,) - r-lt2t3(2r-lv, - 2a - P,)} u, 
dt 

+ k-2{r-151t2(a2 + p2) + r-1t;2t3b} u, 

4- k2{ - ((1)2 a2 - t 1 t 3 ( b  - al) + (r-1t2)2 (a  +P,) + (&3)2 (2r-lvO - a)}  u3, (2.16) 

k3 dt = k-Z{tlt3(2r-l uo - Pz) + (r-152)2 (b -4 + (t3)”p1} u1 

+ k-2{ - (t1)2p2 + 51(3p1 - ( r -1(2)2  (a  - a,) - (53)2 2r-%,} u, 

+ - r-’t1t2(a2 + P,) + r-lt2t3(a1 + p,)> us. (2.17) 
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These transport equations are valid along the rays (2.14). Thus substituting (2.14) 
into (2.15)-(2.17), we obtain a closed linear system of ordinary differential equations 

d o  
- = A ( t )  Q 
at 

(2.18) 

for the amplitude o = {vl, v2, vg} of the gravity waves. Analogous with I, this is the 
basic system of equations for our stability analysis. 

So far, nothing has been said about boundary conditions. If there are boundaries 
(e.g. rigid walls or free boundaries), the basic flow (2.2) is of course assumed to satisfy 
the boundary conditions imposed at  these boundaries. Since the rays ( 2 . 1 4 ~ )  are 
identical with the streamlines of the basic flow (2.2),  they never hit the boundaries if the 
initial values r,, 4,) zo are restricted to points within the fluid. On these rays the 
amplitude a, in the leading term (2.9) is seen to be uniquely determined by the system 
of transport equations (2.18) together with the initial values a t  t = 0 of o and 56, t;, 
5; (i.e. a, is essentially determined by a local analysis). In particular we see from 
(2.18) that a,, = 0 in a neighbourhood of the boundaries if the initial values a t  t = 0 of 
o is chosen to be zero in this neighbourhood. With this choice the leading term (2.9) 
obviously satisfies the boundary conditions, and these boundary conditions only affect 
the leading term (2.9) in an arbitrarily small neighbourhood of the boundaries. 
Within the fluid the leading term (2.9) therefore represents an approximation of a 
family of solutions of mixed initial-boundary-value problems as well as problems 
where the fluid is unbounded. As a consequence of this only instabilities which 
are not sensitive to boundary conditions may be detected in the leading term 
(2.9). 

3. The autonomous case 
The system (2.18) is easily seen to be autonomous if and only if 

5;a(r,, zo) = t;W-,, zo) = 0. (3.1) 

After a considerable amount of algebra, the eigenvalues of the matrix A in (2.18) are 
in this case found to be 

where D is given by 
A, = 0, A2 = ik-lD, A, = - A 2 ,  (3.2) 

o2 = - W 2 a 2 P 2 +  2 5 ; 5 ; a l P z -  (rc15;)2(~1P1+~2P2) 

- (t:)2{a,/3, + 2r;l w,(a - 2r;l w,)]. (3.3) 

In  (3.3) it is assumed that r = ro and z = z, have been substituted into a,, PI, a2, 

Prom standard theory of stability (see Roseau 1966) we conclude that a necessary 
condition for stability of the trivial solution o = 0 of (2.18) when (3.1) is satisfied, is 
that D2 2 0. Since D2 is a quadratic form with respect to 66, r-l&& ti, it can be trans- 
formed to  a diagonal form 

P Z ,  vo, a. 

D2 = K, x2 + K~ y2 - (a, PI + a2P2) (r;l [g)2 (3.4) 
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by an orthogonal transformation (ti, 6;) + (x, y). The coeEcients K ~ ,  K~ are then the 
eigenvalues of the symmetric matrix associated with the ti, 6; part of the quadratic 
form (3.3). They are found to be 

K, = - i(al P1 + a2 P2) - re1 vo(a - 2rk1 vo) 

+ ( -  ~ ~ " { ~ B ~ ~ l P 1 + ~ 2 P 2 ~ + ~ ~ 1 ~ o ~ ~ - ~ ~ ~ 1 ~ o ~ 1 2  

+ ( a l ~ 2 ) ~ - a 2 ~ 2 [ a 1 ~ 1 + ~ r ~ 1 v O ( a - ~ ~ ~ 1 v 0 ) ] } ~  ( n  = 1,2). (3.5) 

In  order that 0 2  2 0 at a point ro, q50, zo for every choice of Ei, 6; when 5; = 0, it is 
obviously necessary and sufficient that K~ 2 0 and K~ 2 0 a t  that point. It is easily 
seen that K~ 2 0 and K~ 2 0 if and only if 

a1 P1 + a2 P2 + 2r;l vo(a - 2r,i1 vo) < 0, 

a2 P 2 h  P1+ 2rc1 vo(a - 2re1 2 (a, /32l2. (3.6) 

From this we may conclude the following. 

a t  a given point ro, q50, zo, it is necessary that 
Lemma 1.  In  order that the trivial solution of (2.18) shall be stable for all ti, cf, 

a1 P1 + 2r;l vo(a - 2r;l wo) ,< 0, (3.7) 

4 2  < 0, (3.8) 

.2P2{.1 p1+ 2rc1 - 2r,i1 v,)} 2 (a, P 2 I 2 ,  (3.9) 
hold at that point. 

From standard theory of stability we conclude that 0 2  > 0 is a sufficient condition 
to ensure stability of the trivial solution of (2.18) when = 0. Hence the trivial 
solution of (2.18) is always stable when ct = 0 and the strict inequalities hold in 
(3.7)-(3.9). If, on the other hand, equality holds in one of these inequalities, the 
eigenvalues (3.2) are not necessarily simple any longer. In these marginal cases a more 
detailed analysis is therefore needed in order to settle the stability problem for (2.18). 
This will be done in 0 5. 

At points ro, #o, zo where a = b = 0, if any, (3.1) is satisfied for every choice of 
[i, [& 6;. Thus the trivial solution of (2.18) will be unstable for some choices of ti, ti, 
a t  those points unless a181+a2P2 < 0 (3.10) 

holds there in addition to (3.7)-(3.9). However, (3.10) is necessarily satisfied when the 
strict inequality holds in (3.8).  In  fact, (3.8) then implies that a2and P2 have opposite 
signs, and since b = 0 it follows from (2.4) that alp2 = a2P1. Thus either a1 = P1 = 0 
or a1 and p1 have opposite signs, consequently alpl < 0. The marginal case where 
a2P2 = 0 will be discussed in 0 5 .  

4. The non-autonomous case 
We now consider the cases where (3.1) is not satisfied, i.e. we assume that 

(4.1) 
2def 2 m - a ( Y o ,  20)  + b2(r,, zo) * 0, Ef * 0. 

It is easily seen in these cases that the matrix A(t) in (2.18) is analytic at  t = + co, i.e. 
that fort > to > 0, A ( t )  can be written as a convergent power series 

A(t) = 5 (:ikAk. 
k=O 

14-21 
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The first two matrices in this expansion are found to be 

A,= 0 0 a, , A,= d ,  d ,  b, , (4.3) 
la3 a, 0 1 

a, = m-2(2abr;1 vo + aba, + b2a1), 

a, = m-,( - 2abr;l v, + abp, + b2p,), 

d ,  = m-,(ba, + bp, - a,), 

d,  = m-,( - aa, + 2br;l v, - ba - bp,), 

d, = m-,( - aa, - up, - ba, - bp,) ; 

1b3 b, d.) 
where 

a, = m-2(2b2r;1 v, - aba, - a2a2), 

a, = m-,( - 2b2r&l vo - abp, - a2p2); 

(4.5) i 
d, = m-,( - up1 - 2br;l v, - ba - ba,), 

d ,  = m-2(aa2 + up, - b2), 

b, = (rrl t:m2))-' {ti( - 2 m ,  + 2br;l vo + ab + ba,) 
+ &32ba, - 2ar;' v, + a2 - aa, - 2ba,)}, 

b, = (r;l tfm2)-' {a( - 2aa, + b2 - 2aa, - ba,) 
+ 532ba2 - 4brc' v, + ab + aa,)}, 

b, = (r;1[tm2)-l {ti( - 2aa, - 2br;l v, + bp,) 
+ <@ba, + 2ar;' vo - up2 - 2bp,)}, 

b, = (rC1 t$mm")-' {<A( - 2aa, - Zap2 - bp,) 
+ t$(2ba4 + 4br;l vo + up,)}. 

From (4.3) it follows that 

(4.7) t 

(4.8) t 
where 

8 = -d l -d4-d5 ,  w = -a,a,--,a,, 
p = -a,b,-a,b,-a,b,-a,b,, 

v = a, a,d, - a, a,d, + a,a,d, - a, a3d2. 

Using (2.4) and (4.4)-(4.6), the expressions (4 .8)  may be written as 

(4.9) 

where M 2  = - a2p2 a2 - 2a, /3, ab - {al p1 + 2r;l vo(a - 2ri1 v,)} b2, (4.10) 

S = {a,/I1-a,/3,+ 2r;lv0(a- 2r;1v0)}ab-a,~,(a2+b2).  (4.11) 

From (4.7),  (4.9) the eigenvalues of A, are found to be 

(4.12) 

From standard theory of stability we conclude that a necessary condition for 
stability of the trivial solution of (2.18) is that M 2  2 0. However, if we look at the 
expression (4.10) as a symmetric quadratic form with respect to a, b, it  can be trans- 
formed to a diagonal form which is easily found to be 

M2 = K1 K2+ K, L2, 

.M  
m 

h, = 0, h, = 2--, h, = - A 2 .  

(4.13) 
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where K ~ ,  K~ are given by (3.5) and K ,  L are two linearly independent combinations of 
a and b. Thus M2 2 0 when the conditions in lemma 1 are satisfied. Furthermore, 
(4.13) shows that 2M = 0 is only possible when equality holds in at  least one of the 
inequalities (3.7)-(3.9). As we have noted earlier, these marginal cases will be studied 
in Q 5. 

Let us now assume that the strict inequalities hold in (3.7)-(3.9). The eigenvalues 
(4.12) of A, are then distinct; we may therefore consider the following asymptotic 
equations as t -+ + 00 

(4.14) 

Using (4.7), (4.9) and (4.12) the solutions are found to be 

(4.15) 

The theorems 2.1 and 4.1 in Coddingtqn & Levinson (1955, cha. 5)) imply that there 
exist linearly independent solutions cr(,,(t), q2)( t ) ,  q,,(t) of (2.18), such that for some 
constant vectors P,, P,, P, we have asymptotically as t -+ + co 

)Iqj,(t) - Pjexp(Ajt+rjInt)JI = O(tRerj-leReAjt 1. (4.16) 

Thus a sufficient condition for stability of the trivial solution of (2.18) is that the three 
expressions exp(Ajt+rj lnt) , j  = 1, 2, 3, are bounded as t-++co. From (4.12), (4.15) 
it  is easily seen that this is always the case. In view of the discussion a t  the end of the 
preceding section, we have therefore proved 

Lemma 2. Assume that 
a1 P, + 2rc1 wo(a - 2r;l u,) < 0, (4.17) 

ad32 < 0 9  (4.18) 

012 Pd.1 P I  + 2rl7 vo(a - erg1 .,)> > (a, P 2 ) 2 ,  (4.19) 

are satisfied at a given point r,, 4,) zo. The trivial solution of (2.18) is then stable for 
all ti, ti, t t  at this point. 

5. The marginal cases 
In this section we shall study the stability properties of the trivial solution of (2.18) 

in all cases which are intermediate to the lemmas 1 and 2, i.e. we shall study the cases 
where equality holds in at  least one of the inequalities (3.7)-(3.9). 

Lemma 3. Assume that a1P1 + 2rg1w0(a - 2r,71v0) = a2P2 = 0 at a given point 
r,, +,, z,. The trivial solution of (2.18) is then stable for all ti, ($,ti if and only if 

at the point r,, $,, zo. 
ti. Then 

alp2 = 0 by the inequality (3.9) in lemma 1.  If we choose 6; = 0,  we therefore obtain 
A, = A, = A, = 0 from (3.2), (3.3)) which implies that the matrix A in (2.18) must 
vanish when 5," = 0. This is easily seen to imply (5.1). If on the other hand we suppose 
t,hat (5.1) is satisfied, the trivial solution of (2.18) is obviously stable for all <A, ti, ti. 

a, = a2 = P I  = P2 = wo = a = b = 0 (5.1) 

Proof. Suppose that the trivial solution of (2.18) is stable for all t:, 
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Lemma 4. Assume that alp1 + 2r;l w,(a - 2r;l w,) = 0 and a2Pz < 0 a t  a given point 
r,, q5,, z,. The trivial solution of (2.18) is then stable for all C;, <& 6; if and only if 

at the point ro, #o, zo. 
Proof. Suppose that the trivial solution of (2.18) is stable for all ti, ti, 6;. If we choose 

6; = 6; = 0, we see from (3.2), (3.3) that A, = A, = A, = 0. This implies that the matrix 
A in (2.18) must vanish when 6; = tt = 0, which is easily seen to imply (5.2). On the 
other hand, suppose now that (5.2) is satisfied. In  the autonomous case, i.e. when (3.1) 
is satisfied, the trivial solution of (2.18) is then easily seen to be stable. In the non- 
autonomous case, i.e. when 6,2b $: 0, it foIlows from (4.3), (4.4) that A, = 0. By intro- 
ducing 7 = In t as a new independent variable in (2.18), we obtain a system where the 
trivial solution has exactly the same stabilityproperties as the trivial solution of (2.18). 
Asymptotically as 7 --f + co this transformed system tends to a system with A, given 
by (4.3), (4.5) and (4.6) as coefficient matrix. From standard theory of stability it is 
not difficult to show that in this case the trivial solution of (2.18) is stable if and only 
if the trivial solution of 

a, = p, = vo = a = 0 (5.2) 

do 
= A1o (5.3) 

is stable. The latter follows since the eigenvalues of A, are found to be 

A, = 0, A,= -&+($-R,)&, A, = -$-(%-Rl)&, (5.4) 

where R l = - l +  +2 - [ ( (5.5) 

is seen to be positive by the assumptions in the lemma. 

r,, #,, 2,. The trivial solution of (2.18) is then stable for all 6;, ti, 6; if and only if 
Lemma 5.  Assume that alp1 + 2r;lv,(a - 2r;l w,) < 0 and a2P2 = 0 a t  a given point 

a, = B2 = b = 0, (5.6) 

alp1 G 0, (5.7) 

and furthermore a t  least one of the following conditions 

(i) a + 0, (ii) a, = P1 = 0, (iii) alP1 c 0 

are satisfied a t  the point ro, q50, zo. 
Proof. Suppose that the trivial solution of (2.18) is stable for all t i ,  ci, 6;. If we choose 

6; = (2 = 0, we see from (3.2), (3.3) that A, = A, = A, = 0. This implies that the matrix 
A in (2.18) must vanish when 5; = 5; = 0, which is easily seen to imply (5.6). If we 
assume a = 0 also, (3.10) implies (5.7). If a $: 0, we consider the non-autonomous case, 
i.e. the case where g; + 0. It then follows from (4.3), (4.4) that A, = 0 and as in the 
proof of the preceding lemma the stability properties are therefore determined by the 
matrix A, given by (4.3), (4.5) and (4.6). The eigenvalues of A, are found to be 

A, = 0, A, = - & + ( $ - R , ) & ,  A3 = -i-(+-RZ)i, (5.8) 

where (5.9) 

In  order that the trivial solution of (5.3) shall be stable in this case, it is therefore 
necessary that R, 2 0 for all ti, ti, 6; such that t t  + 0. By choosing t i  = 0 in (5.9), the 
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necessity of (5.7) is established. It now remains to prove the necessity of (ii) when 
a = alPl = 0. If we in this case choose ti = 6; = 0, we see from (3.2), (3.3) that 
A, = Az = A, = 0.  This implies that the matrix A in (2.18) must vanish, which is 
easily seen to imply (ii). On the other hand, in view of the above considerations it is 
not difficult to show that the trivial solution of (2.18) is stable for all ti, ti, 5; if (5.6), 
(5.7) and a t  least one of the conditions (i), (ii), (iii) are satisfied. 

Lemma 6. Assume that a, + 2r;l v,(a - 2r;l v,,) < 0, a2P2 < 0 and 

01.2 A{., A+ 2r;' v,(a - 2 r 2  .,)I = (a, P d 2  
at a given point ro, $,, zo. The trivial solution of (2.18) is then stable for all ti, ti, ti 
if and only if 

a,b+a,a = vo = 0 (5.10) 
at the point ro, $,, z,. 

Proof. Suppose that the trivial solution of (2.18) is stable for all & ti, ti. If we 
choose t: = (a,/a,)Ci and gi = 0, we see from (3.2), (3.3) that A, = A, = A, = 0. This 
implies that the matrix A in (2.18) must vanish, which is easily seen to imply (5.10). 
On the other hand, suppose that (5.10) is satisfied. In  the autonomous case, i.e. when 
(3.1) is satisfied, i t  is then easily seen that the trivial solution of (2.18) is stable. In the 
non-autonomous case, i.e. when (4.1) is satisfied, it  follows from (4.3), (4.4) that 
A,, = 0. As in the proofs of the preceding two lemmas, the stability properties are 
therefore determined by the matrix A, given by (4.3), (4.5) and (4.6). The eigenvalues 
of A, are found to be 

A 1 -  - 0, A, = -B+(&-R,)*,  A, = - i - ( i - R 3 ) i ,  (5.11) 

where (5.12) 

From (5.10) and the assumptionsin the lemma it follows that R, > 0; thus (5.11) 
shows that the trivial solution of (5.3) is stable. Consequently the trivial solution of 
(2.18) is stable. 

6. Discussion of stability 
At an arbitrarily given initial point r,, $o, zo in the fluid, the six lemmas proved in 

the preceding three sections give necessary and sufficient conditions for the trivial 
solution of (2.18) to be stable for all ti, tf, 6; in all possible cases. As far as it is possible 
to draw conclusions from the leading term in the generalized progressing wave expan- 
sion for the gravity waves, it is therefore possible from these lemmas to draw the 
optimal obtainable necessary conditions for the basic flow (2.2) to be stable (see 
Eckhoff 1975). 

We first consider the speciaI case where V is independent of z, i.e. PZ E 0 and 
consequently this case is always marginal. From the lemmas I ,  3 and 5 we see that the 
basic flow (2.2) cannot be stable unless 

a2 = b = 0,  (6.1) 

i.e. it  is necessary that the basic flow (2.2) is independent of z. In  order to obtain 
further necessary conditions from the lemmas 1 ,  3 and 5, we may therefore assume the 
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basic flow (2.2) to be independent of z. However, the problem is then a special case 
of the problem discussed in I; it is t,herefore unnecessary to repeat the details here. 
We sum up the results thus. 

Theorem 1. Let the potential for the external forces V be independent of z. In order 
that the basic flow (2.2) shall be stable it is necessary that the basic flow (2.2) is 
independent of z and that 

holds everywhere in the fluid. If equality holds in (6.2) on some set of positive measure, 
it is furthermore necessary for stability of the flow (2.2) that 

holds almost everywhere on this set. 

We now consider the cases where 8Vla.z $: 0 almost everywhere in the fluid, i.e. 
we assume that P2 $: 0 almost everywhere. From the lemmas 1, 3 and 5 we then see 
that the basic flow (2.2) cannot be stable unless 

azP2 < 0 (6.4) 

holds almost everywhere in the fluid. This condition together with Iemma 1 gives that 
it is also necessary for stability of the flow (2.2) that 

P z  a, P1 + 2r-'v0(a - 2r-lv0) < - (a$ 
a2 

holds almost everywhere in the fluid. We note that all the conditions in lemma 1 are 
satisfied when (6.4), (6.5) are satisfied. Furthermore, using (2.4) we may rewrite (6.5) 
in the following way 

a 

a2 
2r-lv,(a - 2r-1v0) < -A 2r-'v0 b .  (6.6) 

If equality holds in (6.5) (or equivalently in (6.6)) on some set of positive measure, it 
follows from lemma 6 that the basic flow (2.2) cannot be stable unless 

vo = 0 (6.7) 

almost everywhere on this set, which implies that a = b = 0 almost everywhere on 
this set also. Finally, lemma 4 shows that if the equality holds in (6.5) (or equivalently 
in (6.6)) and a1 = 0 on some set of positive measure, then the basic flow (2.2) cannot 
be stable unless 

PI = 0 

almost everywhere on this set. When vo = a1 = 0, however, (6.8) is automatically 
satisfied by (2.4). Summing up, we have proved therefore the following theorem. 
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Theorem 2, Let the potential for the external forces V be such that aV/az =+ 0 
almost everywhere. In  order that the basic flow (2.2) shall be stable it is necessary that 

hold almost everywhere in the fluid. If equality holds in (6.10) on some set of positive 
measure, it is furthermore necessary for stability of the flow (2.2) that 

vo = 0 
almost everywhere on this set. 

(6 .11)  

7. Interpretation of the results 
When the potential for the external forces V is independent of z, theorem 1 shows 

that the basic flow (2.2) is unstable if v, depends on z, i.e. if there is shear in the direction 
orthogonal to the external forces. It is possible, however, to show that this instability 
is rather weak, i.e. the perturbations have a linear growth. When vo is independent 
of z, po andp, are necessarily independent of z by (2.3) in this case. Thus it only remains 
to discuss the conditions (6.2)) (6.3). This is partly done in I. 

When the potential for the external forces is such that aV/az =+ 0 almost every- 
where in the fluid, condition (6.9) in theorem 2 together with the equilibrium equation 
(2.4) show that, in the static case where vo = 0, it is necessary for stability that the 
fluid is stratijed with V p ,  parallel to V V .  The stratification must be such that the local 
Brunt-Vaisala frequency N is a positive real number almost everywhere. In fact, 
here we define 

N 2  = N:+N; ,  (7.1) 

where 

(see Eckart 1960; I). Since v, = 0 here, it follows from (6.9) and (2.4) that N :  > 0 
and N," 2 0 almost everywhere. 

We now consider the non-static cases when aV/az $. 0 almost everywhere. Since the 
leading term in the generalized progressing wave expansion for the gravity waves is 
not seriously affected by the presence of boundaries (see the discussion at the end of 
Q 2), we may consider the set of points where v,, = 0 and the set of points where vo =+ 0 
separately. Since we have discussed the static case already, it therefore suffices to 
consider the cases where vo + 0 almost everywhere. In order that the basic flow (2.2) 
shall be stable in these cases, condition (6.9) in theorem 2 shows that the fluid must 
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be stratified in a (statically) stable way in the axial direction. Furthermore, theorem 2 
shows that it is also necessary for stability that 

holds almost everywhere in the fluid. 
If we compare these results with those we obtained in the cases covered by 

theorem 1, we find that the picture is radically changed. On the one hand, the presence 
of an axial component in the external force field implies that there may exist stable 
flows with axial shear. On the other hand, when vo is independent of z,  we got (6.2) 
as a necessary condition for stability when aV/az = 0, while from (7.3) we get 

as a necessary condition for stability when aVl8.z =+ 0 almost everywhere. Thus there 
is a strict limit on the radial shear in a stable basic flow (2.2) when aV/az =/= 0, while 
a sufficiently strong stratification can stabilize any radial shear when aV/az = 0 (see 
Warren 1975; I). 

The above results are directly applicable in the classical problem of a flow between 
two infinitely long coaxial rotating cylinders. If the cylinders are placed vertically 
in a gravitational field, we have proved that the velocity has to satisfy (7.4) and that 
the fluid must be stratified in a (statically) stable way in the axial direction. These 
conditions must be satisfied independently of how weak or strong the gravitational 
field actually is. Since the criteria for stability obtained in the case V = 0 are radically 
different from those obtained when aV/az + 0, it is never possible to neglect the effect 
of gravity in this problem. It is interesting to note that (7.4) is exactly the classical 
criterion obtained by Lord Rayleigh (1916) for the stability of the flow of an inviscid 
incompressible and homogeneous fluid between two coaxial rotating cylinders. The 
reasoning applied by Lord Rayleigh gives a physical interpretation of the condition 
(7.4) (see Chandrasekhar 1961, p. 273); thus we have a certain understanding of the 
physical mechanism behind the general condition (7.3) also. 

Since the majority of the previously known results on rotating fluids concerns 
incompressible and homogeneous fluids, it may be appropriate to consider the corres- 
ponding limit in the above criteria when vo is independent of z, i.e. the limit where 
co +m, apo/ar+ 0 and apo/az+ 0. Since Lord Rayleigh’s criterion (7.4) is independent 
of these quantities, it must be valid in this limit when vo + 0 and aV/& + 0 almost 
everywhere. When aV/az = 0 and vo + 0 almost everywhere we have shown that (6.2) 
with strict inequality is the relevant stability criterion instead of (7.4). Let e > 0 be 
an arbitrarily given small number. By assuming that the compressibility and the 
inhomogeneity of the fluid are sufficiently small (depending on E )  it  then follows from 
(7.2) that 

“Ol < E  (7.5) 
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(N, 
is unstable unless the following inequalities 
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0 in this case). From theorem 1, (6.2) it  now follows that the basic flow (2.2) 

0 < N," < 8, (7.6) 

(7.7) 

are satisfied almost everywhere in the fluid. In  the limit e-+ 0 (7.7) is exactly Lord 
Rayleigh's criterion (7.4)) which therefore is the relevant criterion for an incom- 
pressible and homogeneous fluid when there is no external force field also, in accordance 
with Lord Rayleigh's original work (1916). We note that in order to retain stability 
of the basic flow (2.2) in the above limit, we have to allow a small amount of compres- 
sibility and inhomogeneity corresponding to the inequality (7.6). In fact, if N, =- 0 the 
basic flow (2.2) will be unstable and the perturbations will have a linear growth. This is 
a marginal case which is analogous to the case N = 0 in Eckart (1960, p. 60, equation 14) 
for the perturbations of a static equilibrium of a compressible fluid in a gravita- 
tional field. We also note that if we take the limit co+ co but not apo/ar + 0, apo/az-+ 0, 
i.e. consider an incompressible fluid which is stratified, we find that Lord Rayleigh's 
criterion is relevant only when there is an axial force field. When there is no force field, 
the relevant stability criterion is easily deduced from theorem 1. In  fact, when V = 0 
and wo $: 0 almost everywhere, this theorem gives in the limit co-+co the following 
conditions 

a 
ar ar (7.8) 

r ~ ~ p ; l -  (por2vi)  = r - l ~ & l S + r - ~ -  (rvJ2 > 0 when T - ~ -  (rvo)2 < 0. (7.9) 

r-lvip;l-o aP > 0 when r-3- (rvo)2 2 0, 

a a a 
ar ar ar ar 

When r-3a(rvo)2/ar 2 0 the first inequality in (7.9) is an obvious consequence of (7.8),  
and when r-3a(rvo)2/ar < 0 the first inequality in (7.8) is an obvious consequence of 
(7.9). Thus we have shown that in order for a stratified incompressible fluid to be 
stable when V E 0 and vo $: 0 almost everywhere, it is necessary that 

(7.10) 
a @ >  0 and - ( p o r 2 v i ) >  0 

ar ar 

are satisfied almost everywhere in the fluid. These are exactly the conditions given by 
Yih (1965, p. 271). 

In order to interpret the general condition (7.3) further, we note that (2.4) implies 

(7.11) 

Thus, when the necessary condition for stability (6.9) is satisfied, (7.1 1) shows that the 
right-hand side in the necessary condition (7.3) is negative if and only if one of the 
following two conditions is satisfied 

(7.12) 
a a 
az az 

(i) 0 < r-l-wi < a2P1, (ii) a2P1 < r-l-v; < 0, 



On the stability of rotating ,fluids 447 

where by (2.8) 

(7.13) 

Furthermore, (7.11) shows that the right-hand side in (7.3) has a minimum value with 
respect to variations of the axial shear when 

a 
a Z  O -  

r-l - v2 - +a2 P1. (7.14) 

For this value of the axial shear, (7.3) becomes 

Thus we have shown that if the axial shear satisfies one of the two conditions in (7.12)) 
the necessary condition for stability (7.3) is less restrictive with respect to the radial 
shear than (7.4). In  fact, the condition (7.3) is somewhere between the two conditions 
(7.4) and (7.15). In  this sense we see that an axial shear may have a Stabilizing effect 
on the basic flow (2.2) in special cases. The magnitude of this stabilizing effect is by 
(7.15) seen to depend on the stratification of the fluid. 

When the axial shear does not satisfy one of the two conditions (7.12)) the necessary 
condition for stability (7.3) becomes more restrictive than (7.4) with respect to the 
radial shear. If the axial shear is very strong compared with the stratification of the 
fluid, (7.3) becomes very restrictive indeed. In fact, if 

(7.16) 

then it follows from (7.3), (7.11) that a necessary condition for stability of the basic 
flow (2.2) is that 

(7.17) 

We have shown therefore that an axial shear in most cases has a destabilizing effect 
on the basic flow (2.2), and that the magnitude of this destabilizing effect may become 
essential if the axial shear is sufficiently strong. 

To illustrate the above results, let us again consider the classical problem of a flow 
between two coaxial rotating cylinders placed vertically in a gravitational field (with 
the z axis pointing upwards say, i.e. aV/az < 0). When (6.9) is satisfied, a2Pl > 0 by 
(7.13). Thus a sufficiently weak axial shear with a(v:)/az > 0 may have a stabilizing 
effect on the basic flow (2.2), while all axial shears with a(v;)/az < 0 and also all 
sufficiently strong axial shears with a(v;)/az > 0 have a destabilizing effect. In experi- 
ments where the length of the rotating cylinders has to be finite, this destabilizing 
effect may be important at  least near the ends of the cylinders. 

The results in this paper are also directly applicable to the basic motion of planetary 
and stellar atmospheres. In  fact, aV/az + 0 almost everywhere since 8Vla.z = 0 only 
in the equatorial plane z = 0 when the z axis is the axis of rotation and z = r = 0 is 
the centre of the planet or star. In  the case of a star, the potential for the external 
forces V may here be due completely to the gravitational field set up by the unperturbed 
'atmosphere ' itself. The necessary conditions for stability of a rotating atmosphere 
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obtained from theorem 2 are (6.9) and (7.3).  As discussed earlier in this section, (6.9) 
implies that the atmosphere must be stratified in a (statically) stable way, while (7.3) 
implies that the outer regions of the atmosphere must rotate sufficiently fast compared 
with the regions near the axis (see Chandrasekhar 1961 for a discussion of the con- 
dition (7.4)). 

Finally we should like to remark that it follows from the calculations in this paper, 
that in a stable basic flow (2.2) where aV/az + 0 almost everywhere, the gravitywaves 
will locally always oscillate with a frequency lying somewhere between two specific 
frequencies Fl and F2 which from (2.4), (2.8) and (3.5) are found to be 

a 
ar 

where E2 = N 2  + r-3- (rvo)2, 

P = c ~ l { a ~  b + a2(a - 2r-1v0)} 

(7.18) 

(7.19) 

Here N is the local Brunt-Vaisiila frequency given by (7.1), (7.2). In the static case 
where vo = 0 as well as in the limit r + 00, we see that 

Fl = 0, F2 = N .  (7.21) 

Thus it seems that F2 rather than N is the adequate generalization of the local Brunt- 
Vaisala frequency for the general basic states we have considered in this paper. 
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